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We present observations of travelling-wave convection in ethanol/water mixtures in 
a rectangular container using shadowgraphic flow visualization along the axes of the 
convective rolls. The entrainment of solute into the centre of the fluid layer from the 
boundary layers at the top and bottom of the cell is clearly observed in the 
shadowgraph images as sharp features at the roll boundaries. The shadowgraph 
images are integrated to yield a map of the two-dimensional refractive-index field. 
The contributions to this field from the convective temperature and the concentration 
fields have sufficiently different spatial character to be reliably separated using 
image-processing techniques. This has allowed us to produce a map of these two flow 
fields that is in good quantitative agreement with numerical integrations of the full 
Navier-Stokes equations in the Boussinesq approximation. We also present 
qualitative visualizations of transients caused by abruptly triggering and quenching 
travelling-wave convection. These experiments illustrate the formation of con- 
centration boundary layers and reveal the existence of large-scale currents which are 
an inherent part of travelling-wave convection. 

1. Introduction 
In the past several years, the problem of convection in a thin, horizontal layer of 

a binary fluid mixture which is heated from below has been the focus of an enormous 
amount of scientific activity. The principal reason for this interest is the fact that 
both the linear state to which the conducting fluid is unstable a t  onset and the 
nonlinear state which is triggered by this instability take the form of travelling waves 
(Walden et al. 1985; Kolodner et al. 1986; Surko & Kolodner 1987). Because these 
experiments can be controlled with extreme precision, and because the equations 
which describe this system are well understood, binary-fluid convection is an 
excellent system in which to study the nonlinear dynamics of travelling waves. 
Indeed, a wealth of fascinating travelling-wave patterns has been studied in such 
experiments (for references to recent work, consult Moses & Steinberg 1989; 
Kolodner 1990; Barten, Lucke & Kamps 1991 ; Steinberg & Kaplan 1991). 

Despite this enormous amount of attention it is only recently that theoretical 
understanding has evolved to the point of quantitatively explaining why nonlinear 
convective rolls in binary fluids propagate in the first place. In this system, the 
primary experimental parameter is, as usual, the Rayleigh number, which is 
proportional to the temperature difference AT applied across the fluid layer. The 
diffusive concentration flux driven by the Soret effect (Hurle & Jakeman 1971) 
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requires the definition of a second experimentally important parameter: the 
separation ratio $ = -pC( 1 - C) S,/a, where C is the mean concentration, S ,  is the 
Soret coefficient, and the expansivities 01 and p are given by a = p-'ap/aT and 
p = p-l a p / W  (p is the fluid density). In a series of papers on succcssively better 
approaches to solving the Boussinesq equations for convection in a binary fluid (Linz 
& Lucke 1987; Linz et al. 1988; Barten et al. 1989; Barten, Lucke & Kamps 1990, 
1991), i t  has been shown that the flow fields in travelling-wave convection include a 
concentration wave in which clockwise-turning and counterclockwise-turning rolls 
have a different average solute concentration. As was appreciated in the very first 
paper on travelling-wave convection (Walden et al. 1985), the different buoyant 
forces in rolls with different average concentrations leads to the propagation of the 
pattern as a whole. As the Rayleigh number is increased, the magnitude of the 
concentration wave is decreased by mixing in the convective flow, and the 
propagation velocity decreases. Recent measurement of the propagation velocity in 
a fluid with $ = -0.25 in a narrow annular container have quantitatively confirmed 
this model of travelling-wave convection (Ohlsen et al. 1990). 

While measurements of the propagation velocity of convective rolls indirectly 
reveal the importance of the concentration wave, a direct measurement of this field 
has always appeared to  be impossible in ethanollwater mixtures. Because of large 
difference in density between the two component fluids, the buoyancy effects which 
cause the propagation of convective rolls require roll-to-roll concentration differences 
which are expected to be so small as to be unobservable, except in their effect on the 
roll propagation velocity. However, i t  has recently been realized that a refractive 
measurement of the concentration wave is indeed possible (Eaton et al. 1991). 
Because of the small Lewis number in this system (thc Lewis number L is the ratio 
of the mass diffusivity D to the thermal diffusivity K ) ,  i t  is expected that the 
concentration inside each convective roll is rendered essentially homogeneous by its 
circulation, so that sharp gradients in concentration only appear a t  the boundaries 
between rolls (Bensimon, Pumir & Shraiman 1989). Shadowgraphic flow visuali- 
zation, in which the image intensity is proportional to the two-dimensional 
Laplacian of the index of refraction, should be exquisitely sensitive to the sharp 
index gradients caused by this concentration-field structure. Eaton et al. (1991) 
observed these features in experiments in which travelling-wave convection in a 
narrow annular container was visualized by shadowgraphy from above. They 
compared their images with shadowgraphs computed from numerically obtained 
solutions of the Navier-Stokes equations. They indeed found that the magnitude of 
the concentration-wave component decreased with increasing Rayleigh number, 
vanishing as the propagation velocity decreased to zero. At the same time, the phase 
shift between the Concentration and the temperature waves evolved with Rayleigh 
number in such a way as to restore the fundamental symmetry with respect to 
reflection about the upflow or downflow roll boundaries that is expected for 
convective states which do not propagate. 

I n  this paper, we also present visualizations of the concentration wave which 
accompanies travelling-wave convection in ethanol-water mixtures, this time in a 
long, rectangular container. A major difference with the work of Eaton et al. (1991) 
is that we employ shadowgraphy from the side, using a broad, collimated laser beam 
which propagates parallel to the roll axes. In  this way, we avoid integrating the flow 
fields in the vertical direction, which would' erase the most interesting structure in 
this two-dimensional flow, namely, the entrainment of solute from the boundary 
layer by the convective rolls. Even the unprocessed shadowgraph images reveal 

-. 
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qualitative features of the flow which are in exact accord with the numerical 
computations. 

Another important improvement in these experiments is that we have gone 
beyond comparing experimental shadowgraph images with images obtained by 
computing the Laplacian of the refractive-index field obtained numerically. Rather, 
our improved spatial resolution and signal-to-noise level have allowed us to 
successfully integrate the light intensity in the flow images, so as to obtain the full 
two-dimensional refractive-index field. Furthermore, because of the differences in 
spatial structure between the temperature and concentration fields, we have been 
able to reliably separate their contributions to  the refractive index, using image- 
processing techniques. These results are in good quantitative agreement with 
theoretical computations. Because our experiment measures not the refractive index 
itself but only its Laplacian, and that only to  within an additive constant which is 
determined with some imprecision, our image-processing results can be used to 
reconstruct the true temperature and concentration fields only to within an additive 
function whose Laplacian is a constant. Tn our case, this is a quadratic function of 
the vertical position. I n  order to fix the three parameters which determine this 
function, we use a small amount of information from numerically computed 
concentration and temperature profiles. This allows us to make a full two- 
dimensional reconstruction of the flow fields that compares quite well with the 
theoretical results. 

While our main aim in this work has been a quantitative comparison of 
experimental and theoretical concentration fields, the qualitative features of the flow 
are also extremely interesting. This is especially true in the case of turn-on and turn- 
off transients. I n  the former case, the onset of nonlinear convection is marked by the 
appearance of sharp features caused by the sweeping of solute into the centre of the 
cell from the boundary layers. As mentioned above, this results in sharp, curved 
features in the images of equilibrated flows. Images of the transients which precede 
this equilibration exhibit spiral, vortex-like structures which propagate laterally 
through the cell, visually revealing the evolution of concentration boundary layers 
out of the conductive state. Turn-off transients are also quite interesting, because 
they reveal the presence of two kinds of large-scale currents which are inherent in 
travelling-wave convection. 

This paper is organized in the following manner. We begin by describing the 
experimental apparatus and the procedure used for visualizing the flow. We then 
describe in detail thc numerical procedures used to  process the flow-visualization 
images and extract the convcctivc tempcraturc and concentration fields. Next, we 
describe the visualization of convective transients. The final section is a discussion. 

2. Apparatus and experimental procedure 
These experiments were conducted using a modified version of an apparatus 

previously used for optical measurements of the Soret coefficient of ethanollwater 
mixtures (Kolodner, Williams & Moe 1988). The heart of the apparatus is shown in 
section in figure 1. Thc convection cell consists of a rectangular quartz frame of inside 
dimensions 0.30 x 0.90 x 6.70 cm which is clamped between two polished copper 
plates. In  this cell, convective rolls align parallel to the short dimension and 
propagate parallel to the long dimension. For corrosion protection, the copper has 
been treated with an aqueous solution of benzotriazole, and all the fill plumbing has 
been constructed out of Teflon, with ungreased, ethylene-propylene O-ring seals. The 
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FIQURE 1. Cross-section of the experimental cell. The convecting fluid is contained in a rectangular 
quartz frame which is clamped between two polished copper blocks (marked ‘Cu’ in the drawing). 
These in turn are pressed against thermoelectric heat-exchange units (marked ‘HE ’) which are 
heat-sunk to the outer, water-cooled copper blocks (‘Cu’). To avoid a lateral gradient in Rayleigh 
number due to warming of the cooling water, the circulation in the heat-sink blocks is counter- 
current. The cell is illuminated from the right by a broad, collimated laser beam, and the image is 
formed on the rotating screen (marked ‘S’) on the left. The cell assembly and the rotating screen 
are mounted inside an insulated, temperature-regulated copper box for isolation from the 
environment. 

temperature difference applied across the cell is maintained by thermoelectric heat- 
exchange units above and below the top and bottom copper plates. This central 
assembly is clamped betwen water-cooled copper blocks which serve as heat sinks for 
the thermoelectric units. For thermal isolation from the environment, the cell is 
surrounded by foam insulation and is placed inside an insulated, water-cooled copper 
box (not shown in figure 1) whose temperature is maintained at the mean cell 
temperature. 

Temperature regulation of the convection cell is provided by a series of 
bridgelservo circuits which read the resistances of thermistors embedded in the top 
and bottom plates of the cell. The temperature of the top plate is held constant to 
within & 10 mK by a d.c. bridge circuit which drives the upper heat-exchange units. 
A second, a.c., bridge circuit drives the lower heat exchangers in response t o  the 
temperature difference measured by a pair of thermistors, one of which is embedded 
in the top plate and the other in the bottom plate. By means of a computer- 
controlled ratio transformer, this servo system is used to apply a temperature 
difference across the cell which is stable to within f3 mK. This is to be compared 
with the temperature difference applied across the cell, which ranges from 5 K and 
10 K, depending on the parameters of each experiment. A third, d.c., bridge circuit 
is used to read the resistances in two other thermistors, for calibration and 
monitoring purposes. A quartz-crystal thermometer probe has been used to provide 
an absolute calibration of all of the thermistors to within 0.1 K. 
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The shadowgraphic visualization of the convective flow is accomplished by 
directing a 9 cm diameter, collimated He-Ne laser beam horizontally through the cell 
parallel to its short dimension. A refractive image of the convection rolls is formed 
on a mylar screen located a distance of 5 cm from the centre of the cell. This short 
distance was used to ensure that the contrast in the image remained linarly related 
to the refractive-index field in the fluid (Rasenat et al. 1989). In order to average out 
the graininess caused by laser speckle, this screen is spun at  about 500 r.p.m. by a 
small d.c. motor. For most of the experiments reported here, the image of the central 
3 cm of the cell (corresponding to approximately 5 pairs of convective rolls) is 
recorded by a c.c.d.-based video camera whose output is displayed on a monitor and 
digitized by a frame-grabber board. The spatial resolution of our digitization is quite 
high: the area of a convective roll is covered by a square mesh of approximately 
64~64pixels .  For noise reduction, the frame grabber records the sum of 64 
consecutive frames, averaging over a period of approximately two seconds - this is 
very short compared to the dynamics of the convective patterns. In  order to 
maximize the resolution of the frame grabber, a d.c. bias is subtracted from the 
image before digitizing, so that the range of contrast in the image fills the entire 
eight-bit digitization range. The d.c. bias is the same for all images in an 
experimental run, but its precise value has not been recorded. This will lead to some 
uncertainty in one of the fit parameters described in the next section. 

These experiments were performed using three carefully degassed solutions of 
ethanol in deionized water, with ethanol concentrations of 8.0%, 10.0%, and 12.0% 
by weight. By varying the mean temperature in the convection cell between 15 "C 
and 29'C, we were able to vary the separation ratio $ from -0.24 to -0.46 
(Kolodner et al. 1988). The typical Lewis number and Prandtl numbers in these 
experiments were 0.008 and 15, respectively. 

Our experimental procedure was quite straightforward. Initially, a travelling- 
wave state was created by setting the Rayleigh number above the onset of 
convection and waiting until a steady state was established. This typically required 
a wait of two hours after the onset of convection. Once an accurate and stable 
measurement of the phase velocity of the convective rolls was made, we acquired a 
sequence of shadowgraph images for data analysis, and we then changed the 
Rayleigh number to obtain a new travelling-wave velocity. We typically scanned 
the Rayleigh number in this way over the entire range from just below the transition 
Rayleigh number r*,  above which the convective pattern is stationary, down to the 
saddle-node Rayleigh number r,, below which a transition back to the conductive 
state is observed. In  addition, most Rayleigh-number scans were repeated with 
waves travelling in the opposite direction. 

As a final remark in this section, we would like to define the notation and 
dimensionless scalings used in the rest of the paper. As usual, lengths are rendered 
dimensionless by scaling them with the cell height d,  and velocities are scaled with 
K / d ,  where K is the thermal diffusivity of the fluid. We shall make an exception to this 
scaling when presenting profiles of the flow fields in the horizontal plane ; then, it will 
be convenient to scale lateral lengths not with the cell height but with the measured 
wavelength h of the convective pattern. Temperatures are scaled with the 
temperature difference AT applied across the fluid layer for the individual run under 
discussion, and concentrations are scaled with aAT/P (the expansivities a and /3 were 
defined in $ 1 ) .  Locations in the two-dimensional flow field are denoted (z, z ) ,  where z 
represents the horizontal position and z the vertical position. Finally, we quote 
reduced Rayleigh numbers computed by dividing the applied temperature difference 
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AT by the temperature difference which corresponds to the onset of steady 
convection in a laterally infinite geometry for a pure fluid with the same thermal 
properties as the mixture. 

3. Processing of flow-visualization images 
3.1. Noise reduction and extraction of the refractive-index jield 

The first phase of our image-processing procedure consists of shifting and adding 
images so as to reduce the effects of noise and defects in the visualization. We begin 
by making a reference image in the absence of convection. Then, after a travelling- 
wave convective state has been established, we digitize a sequence of 32 images a t  a 
sampling rate that is adjusted so that 25 to 30 time steps corresponds to the drift of 
the pattern by the length of one roll pair. The reference image is subtracted from each 
of these images. In this way, we obtain images of approximately 150 roll pairs made 
a t  different times and places in the cell. By shifting them all to a fixed position and 
adding, we will obtain an image of a single roll pair with substantially suppressed 
noise and small-scale image distortions. 

Before this averaging is done, wc perform a mapping which removes large-scale 
optical distortions. To measure these, we demodulate a t  the mean measured 
wavenumber to compute the wavelength profile h ( x )  of the periodic function 
representing the image intensity along the midheight line in each image. We observe 
that A(x) varies by several percent over the length of the region under examination. 
This is mostly due to distortions in the lens of the c.c.d. camera; we expect, on the 
basis of the observations presented by Kolodner (1990), that the influence of the 
endwalls of the cell on the actual roll wavelength profile does not extend into the 
central region of thc ccll which we are examining. Using the technique described by 
Kolodner & Williams (1990), we map cach of the irnuges so that A(x) is rendered flat. 
We then shift all of the imaged roll pairs to a common location in the image and sum 
them. The spatial phases of the constituent images are shifted so that the left edge 
of the sum image corresponds to  the location of a downflow roll boundary. One of the 
results of this shift-and-sum procedure is a precise measurement of the phase velocity 
of the rolls. 

Figure 2 shows the results of this image processing for right-going travelling waves 
at  four different Rayleigh numbers, for 1c. = -0.39. The left-hand roll is duplicated 
on the right of the image for clarity. Image (a)  was made using fast travelling waves 
a t  a Rayleigh number just above the saddle-node point. The sharp, curved features 
are due to the jump in concentration a t  the roll boundaries. The central, light ‘J’- 
shaped feature, for example, is caused by ethanol-rich fluid which is swept down and 
around by a clockwise-rotating convective roll. Images ( b d )  in figure 2 were made 
at  successively larger Rayleigh numbers ; in particular, image ( d )  was made using 
very slowly travelling rolls just below the transition to steady convection. As the 
Rayleigh number is increased and the propagation of the rolls slows down, the curved 
parts of the sharp features become less prominent. The physical reasons for this are 
discussed in $4 below. The reader may note that the dark features in these images are 
wider than the light features, especially in figure 2 ( a ) .  This is not an artifact of the 
processing or of the image reproduction but is due to the concentration dependence 
of the index of refraction and to  the fact that, for this separation ratio, adjacent rolls 
exhibit a relatively strong concentration contrast. As the separation ratio is made 
less negative and/or the Rayleigh number is increased, this asymmetry goes away. 

Barten et al. (1989, 1990) have made several observations about the symmetry of 
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FIGURE 2. Shifted and summed shadowgraph images for right-going travelling waves at four 
different Rayleigh numbers, for + = -0.39. (a )  T = 1.339; ( b )  1.385; (c) 1.443; ( d )  1.607. The sharp, 
curved features are due to  refraction by sharp concentration gradients at  the roll boundaries. The 
contrast in each image has been separately adjusted to slightly overflow the full grey scale. 

one-dimensional patterns of stationary and travelling-wave convection. For example, 
the temperature and concentration fields in travelling-wave patterns of infinite 
lateral extent are expected to be antisymmetric with respect to a spatial shift by half 
a wavelength combined with a reflection through the horizontal midplane. This 
symmetry is qualitatively evident in all of the images of figure 2. In contrast, steady 
convective patterns exhibit an additional invariance with respect to reflection 
through a vertical plane a t  the position of a downflow or upflow roll boundary. This 
symmetry is clearly not exhibited by the top images in figure 2, but the deviation 
from symmetry is seen to decrease as the pattern slows down at higher Rayleigh 
number. Eaton et al. (1991) have shown in detail that the symmetries exhibited by 
experimental patterns of travelling-wave convection evolve with Rayleigh number 
essentially as predicted by the numerical calculations. 

For each map of the two-dimensional image-intensity field l ( x ,  z ) ,  we compute 
the refractive-index field n(x, z )  by numerically solving the Poisson equation : 
V2n(x,  Z) = I(x, z ) ,  using a standard five-point finite-difference approximation. In  this 
integration, we apply periodic boundary conditions in the x-direction and set n = 0 
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FIQURE 3. (a) Light intensity 1(z) wu6. lateral position z in the horizontal midplane of an image of 
right-going travelling waves at r = 1.399, with $ = -0.39. The smooth component is caused by the 
temperature field, and the sharp spikes are caused by the jumps in concentration at the roll 
boundaries. ( b )  Refractive index n(s) obtained by numerically integrating the Poisson equation 
using the intensity field in (a). The sharp features due to the concentration component have been 
rendered almost invisible by the double integration. 

on the upper and lower boundaries z = (0 , l ) .  The conditions imposed a t  the 
horizontal surfaces of the cell are, of course, not physically reasonable. However, we 
are free to add a function of the form 6n(x, z )  = a + bz + $2 to  the computed solution. 
The constant c is equal to the bias which is subtracted from each image before 
digitization; as noted above, this parameter is known from our experimental 
measurements but is somewhat uncertain. The parameters a and b, which are 
completely undetermined by our experiment, will be obtained by imposing the 
condition that the experimental refractive-index field must match the numerical 
results of Barten et al. (1989,1990) a t  the upper and lower boundaries of the cell. This 
is discussed in 53.3 below. 

3.2. Separation of the temperature and concentration jields in the midplane of the cell 

A great deal of insight into the nature of the flow can be obtained if we concentrate 
briefly on the behaviour of the refractive-index field n(x)  as a function of lateral 
position a t  midheight in the cell. Figure 3(a) shows the behaviour of the image 
intensity for a state of right-going travelling waves at r = 1.399, in a fluid with 
$ = -0.39. It is easy to distinguish the smooth, sine-shaped contribution due to  the 
temperature field from the sharp peaks due to the concentration field, just as the 
sharp features are clearly evidence in the images in figure 2 .  Eaton et al. (1991) 
analysed data similar to that in figure 3 ( a )  by comparing with the corresponding 
curves computed from numerical temperature and concentration fields. However, 
the contribution of the sharp peaks to  the refractive-index field obtained by 
integrating the Poisson equation (figure 3b) consists only of a slight asymmetry 
which is no longer easy to discern. The problem of extracting the concentration 
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component nc(x) from the temperature component nT(x) is a subtle and serious one 
which was not addressed by Eaton et al. 

A t  first sight, it may appear that this separation is actually impossible. The chief 
difficulty is already clear from inspection of figure 3 ( b )  : JncJ Q JnTJ.  We expect, on the 
basis both of the theoretical results of Barten et al. (1989, 1990) and from the results 
of successively better analyses of our own data, that nT(x) should be a smooth 

frequency, while nc(z)  should exhibit a roughly square-wave shape whose 
fundamental component is approximately 90" out of phase with nT(x) .  Thb square 
wave will have substantial energy in high, odd spatial harmonics, but sin e the 
dominant spectral weight of both components lies in the fundamental, simple 
spectral filtering will certainly not suffice to separate them. Likewise, simply 
computing two quadrature phases of n(x) will not be useful in separating nc(x) from 
nT(x).  Because the concentration component is so much smaller in amplitude than 
the temperature component, small errors in the phase angle will mix a large 
component of nT(x) into nc(x). 

Despite these considerations, we have been able to reliably extract the 
concentration component by using a fitting procedure that exploits not just its phase 
and harmonic structure, but also its full square-wave shape. In our fit, the 
temperature component is modelled by the sum of a sine wave at the fundamental 
wavenumber and its first two harmonics : 

(1) 
Note that the phases of the harmonics of nT(x) are locked to that of the fundamental. 
The concentration component is modelled by a function f which explicitly exhibits 
the shape of a square wave with finite-width transitions : 

where f(S, kx+ $c) is a clipped sine wave or 'trapezoid wave ' of unit amplitude : 

function of z, exhibiting a limited spectrum of harmonics of the fundam L tal spatial 

F 

nT(z)  = nT, sin (kz+ $T) + nT, sin (2kz+ $T) + nT, sin (3kx+ &). 

n c ( 4  = n c 1 f ( 4  ks+ +C)l (2) 

1, Ssiny> 1 

f(S,y) = Ssiny, 16sinyJ < 1 (3 ) { -1 ,  Ssiny<- l .  

The constant 6 parametrizes the width of the transitions in the 'trapezoid wave' 
functionf(b, y). We fit the refractive-index profile n(x) to the sum of the concentration 
and temperature components as just described, plus an offset no, 

(4) 

using a nonlinear-least-squares algorithm which varies the eight parameters no, nT1, 
nT,, nT8, n,,, q5T, g5c, and S. In figures 4(a) and 4(b) ,  the smooth curves show the 
temperature field T(x)  = (ATan/aT)-ln,(x), where the factor an/aT is evaluated a t  
the mean temperature T, and concentration C, at the midplane of the cell (Kolodner 
et al. 1988), and nT(x) is evaluated using the functional form in (1) and the fit 
parameters found for a right-going wave with phase velocity vph = 0.916 (figure 4a) 
and for a left-going wave with Z)ph = -0.788 (figure 4b). The trapezoid-wave-shaped 
curves represent the concentration field C ( x )  = (an/aC)-ln,(x), scaled by aAT/P. In 
computing C ( x ) ,  instead of the function in (2) and (3) we used the difference 
n(x) -n,-nT(x) computed with the fitted results for no and nT(x).  The functionf(8, y) 
is not proposed as the correct shape for n,(x) ; it is merely used as tool for forcing the 
fit to correctly separate the smoothly varying components of n(x) from the 
concentration component. These curves show that the full refractive-index field does 

4 x 1  = no + nT(4  +new 
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FIQURE 4. Scaled temperature and concentration fields as functions of lateral position x at mid- 
height in the cell, as obtained by integrating the Poisson equation for. ( a )  a state of right-going and 
( b )  a state of left-going travelling waves at r = 1.399. Il’hile the Rayleigh number was nominally 
identical for these two states. their phase velocities are slightly different. The separation ratio wa8 
II. = -0.39. 

indeed consist of the sum of a smooth component, which WL‘ attribute to the 
temperature field, and a trapezoid-wave-shaped component. which wc attribute to 
the concentration field. 

There are several ways to assess whether this decomposition into differently 
shaped waves does reliably determine the true temperature and concentration fields. 
First, we can ask whether changes in the tit procedure introduw systematic errors 
into the extracted concentration field. Our basic observations concern the strength 
of the harmonic components of the refractive-index field. For all of our fits a t  
midheight, we find nT, % n,, 4 nT, and ray? < inc,. Thus, the second-harmonic 
component is always negligible, and the third-harmonic component is small but not 
negligible compared to the concentration component. The most important systematic 
error we can conceive of in our procedure is that the third harmonic should really be 
attributed to the concentration component rather than to the temperature 
component. What error results if this is donc ? Wc have answered this question by 
redoing all of our fits using only the fundamental component in ( 1 ) .  The resulting 
curves for nc(x)  = n(x) - n, - n T ( x )  exhibit wiggles due to the added third-harmonic 
component, but these have an amplitude which is only 50% of that of the 
fundamental in the worst case. Importantly, thc fit parameter n,, is unaffected by 
this change - by choosing the flat-topped fit function in (3), we have averaged out thc 
added wiggles. 

Having performed one test of the effect of systematic errors in our fit procedure, 
we next evaluate the random errors by studying the behaviour of the fitted 
parameters as the Rayleigh number and separation ratio are varied in independent 
experiments. Comparison with temperature and concentration fields derived from 
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FIGURE 5. ( a )  The dimensionless ratio of the amplitudes of the fundamental components of the 
concentration and temperature fields is shown as a function of reduced Rayleigh number, for a 
series of experiments a t  $ = -0.39. Open and closed symbols represent data for states of oppositely 
propagating travelling waves. ( b )  Dimensionless phase velocity va. reduced Rayleigh number for 
the same experiments. The amplitude ratio and the phase velocity appear to exhibit the same 
dependence on Rayleigh number. 
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FIGURE 6. The amplitude ratio in figure 5 (a )  is plotted against the phase velocity in figure 5 ( b ) .  The 
two measured parameters are very accurately proportional, as shown by the straight line, which 
is a fit that passes through the origin. 

numerical solutions of the NavierStokes equations is also useful, and W. Barten has 
provided us with twenty-one such data sets, computed at various Rayleigh numbers 
for @ = -0.25. Figure 5 ( a )  shows the dependence on the Rayleigh number of the 
amplitude of the concentration field, C, = (an/i3C)-'nCl, normalized by the amplitude 

= (an/aT)-ln,, of the fundamental component of the temperature field. The 
derivatives of the refractive index are again evaluated a t  the mean temperature and 
concentration a t  midheight in the cell. As shown by the open and closed symbols, this 
amplitudc has opposite signs for left- and right-going travelling waves. These 
measurements exhibit some scatter a t  low Rayleigh numbers which may have been 
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FIGURE 7 .  The constant of proportionality s determined from data like those in figures 5 and 6 is 
shown as a function of separation ratio I+. Circles: 8.0 wt-% solution; triangles: 10.0 wt-YO 
solution; squares: 12.0 wt-Yo solution. The straight line is a least-squares fit. 
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FIGURE 8. The square symbols show the phase angle $ c - $ T - $ t  of the concentration wave 
with respect to the temperature wave as a function of the phase velocity of the travelling waves 
for I+ = -0.39. The triangles show the phase difference between the fundamental components of 
the concentration and temperature waves computed numerically for @ = -0.25 by W. Barten. 
Open and closed symbols represent oppositely propagating travelling waves. 

caused by incorrect measurement or recording of the Rayleigh number. Remarkably, 
however, the travelling-wave phase velocity vph (figure 5 b )  exhibits practically 
identical behaviour, including the scatter. Indeed, as shown in figure 6, these two 
measured parameters are accurately proportional, a fact which, as far as we are 
aware, has not been noticed previously. As shown in figure 7,  the constant of 
proportionality s = /3Cl/av,, Tl is a linear function of the separation ratio. The 
straight line in figure 7 is a least-squares fit: s = d @ + e ,  with d = -0.171 f0.013 and 
e = 0.052 f 0.005. The numerical data for t,h = - 0.25 also exhibit a proportionality 
between C, and T,, with a proportionality constant s = 0.089f0.003. This agrees 
with our measurement of s = 0.092 f 0.004 at @ = - 0.25. This close agreement, 
combined with the corroboration of the numerical results by the phase-velocity 
measurements of Ohlsen et al. (1990), is a strong indication that our separation of the 
concentration and temperature waves is reliable, and that the theory makes correct 
predictions about the strength and systematic behaviour of the concentration field. 

In figure 8, the phase difference between the concentration and temperature 
waves, #c - #T -in, is shown as a function of the travelling-wave phase velocity for 
t,h = -0.39. As in previous figures, open and closed squares represent data for right- 
and left-travelling waves, respectively. The sign convention we employ in our fit 
procedure is that the two directions of propagation differ in the sign of the 



The Concentration field in travelling- wave convection 43 

concentration field. This implies that, as a function of phase velocity, the phase angle 
#c -#T should be antisymmetric about +IT (cf. figures 4 ( a )  and 4 ( b ) ,  which show the 
flow fields for left- and right-going states at  nearly the same phase velocity). The 
experimental points are indeed nearly exactly antisymmetric about in and exhibit a 
low level of scatter. At high phase velocity, the phase angle is seen to saturate at  a 
value of about O.&, as can be confirmed approximately by inspecting figure 4. The 
phase lag exhibited by the numerically computed flow fields, as represented by the 
open and closed triangles in figure 8, agrees with the experimental phase angle to 
within about 0.1 rad and appears to approach it at high phase velocity. 

Our procedure for separating the fundamental components of the temperature and 
concentration waves rests on three physically reasonable but ad hoc assumptions. 
First, we have assumed that the concentration field exhibits a flat-topped shape 
because of the strong mixing inside the individual convective rolls. Second, we have 
assumed that the fourth and higher harmonics of the refractive-index field belong to 
the concentration field. These assumptions are supported by the numerical data of 
Barten et al. (1989, 1990), in which the concentration field does exhibit a flat-topped 
shape, and in which the fourth and high harmonics of both fields are negligible. 
Third, we have assumed that the first three harmonics of the temperature field have 
the same phase. This behaviour is not exhibited by the numerical data, but our test 
of reanalysing the data without including the second and third temperature 
harmonics showed that the quantitative results are little affected by this assumption. 
Eaton et al. (1991) have observed that the third harmonic of the temperature field is 
weaker in experiments in a narrow annular container than the numerical calculations 
predict, and they suggest that this represents a suppression by the sidewalls of the 
cell. While our cell is wider than that of Eaton et al., this conjecture may be the key 
to the unimportance of the phase of the third temperature harmonic to our analysis. 
With these assumptions, our fit procedure produces a robust set of fit parameters 
which are consistent with the numerical computations. 

3.3. Reconstruction of the full two-dimensional flow fields 
The procedure used to separate the temperature and concentration components of 
the refractive index at  the cell midplane can be performed for each of the other 63 
horizontal lines of data in our flow-visualization images, with two modifications. In 
the midplane of the cell, the concentration profiles were found to exhibit the shape 
of a trapezoid wave with a 50% duty cycle (a ‘symmetric’ waveform). Indeed, this 
symmetry is to be expected for a system which exhibits a symmetry involving 
reflection through the midplane. However, as can be seen in figure 2(a ,  b )  the shape 
of the concentration profiles at other vertical positions in the cell can be expected to 
be asymmetric - i.e. to exhibit a duty cycle which differs from 50 YO. This asymmetry 
is associated with even harmonics of the fundamental wavenumber. Including the 
harmonic terms in (1) would therefore incorrectly mix components of the 
concentration wave into the temperature wave, and so we have dropped them. In 
this way, we sacrifice the ability to learn anything about the third harmonic of the 
temperature wave, but we already know from the tests made on the fits to data a t  
midheight that this procedure need not affect the accuracy with which we can 
measure the amplitude and phase of the fundamental component of the concentration 
wave. However, since we are now fitting an asymmetric concentration wave with the 
symmetric function defined in (3), it will no longer be correct to quote the fit 
parameter nc, as its amplitude. Instead, as was done in the previous section, we used 
the fitted offset no and temperature component nT to compute the concentration 
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FIGURE 9. The dimensionless concentration and temperature field amplitudes (a )  C,, ( b )  TI, and (c) 
C,  are plotted as functions of height z in the experimental cell. Diamonds represent the parameters 
of fits to the experimental data for r = 1.287 and $ = -0.25. For these data, the measured phase 
velocity was vph = 0.728. The solid curves were interpolated to this value of vPh ( r  = 1.26) using 
theoretical profiles computed for $ = - 0.25 by W. Barten. 

component n,(z, z )  = n(z, 2)-n,(z) -n,(x, z ) ,  and we measure its peak-to-peak 
amplitude C,(z) independently of the fit procedure by measuring the difference 
between its asymmetric flat extrema. The second modification to the fit procedure is 
that  we fix the transition-width parameter S in (3) a t  the value determined by the fit 
at midheight. Having distorted the higher-harmonic components of n,(z, z )  by using 
a symmetric fit function, i t  would be pointless to try to improve the fit by varying 
a parameter which chiefly affects those higher harmonics. 

The discrete symbols in figures 9(a)  and 9 ( b )  show the fit results for the z- 
dependence of the amplitudes C,(z) and T, ( z )  for a state of left-going waves a t  
r = 1.287 and $ = -0.25. Both fields drop to zero at  the horizontal boundaries of the 
cell. While the temperature field exhibits a smooth, sine-like profile, the con- 
centration field exhibits a broad plateau in the centre of the cell. The smooth curves 
in the figures have been interpolated from the numerically computed flow fields of W. 
Barten. In comparing the numerical and experimental results, it  must be kept in 
mind that the width of our experimental cell, r = 3.0, has a poorly known effect on 
the experimental measurements. We know from our own unpublished experiments 
that the onset Rayleigh number for the linear oscillatory instability is suppressed by 
2.2% in our cell over the value computed for a laterally infinite layer. As noted by 
Ohlsen et al. (1990), the Rayleigh-number scale for nonlinear states is also affected by 
the cell width, but this effect is not understood quantitatively. Furthermore, the 
scatter in figure 5 has already made us suspect that  the measured Rayleigh number 
is not always the most reliable index of the convective state. Therefore, rather than 
comparing numerical and experimental results at the same Rayleigh number, we 
have elected to make comparisons based on matched phase velocities. Because of the 
observed proportionality between vph and the ratio CJT, shown in figures 6 and 7, 
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this is equivalent to assuring that the peaks of the measured concentration and 
temperature profiles a t  midheight match the numerical computations. The real 
comparison between computation and measurement consists of asking whether the 
shapes of the computed and measured profiles also agree for all heights z in the cell. 

The numerical concentration and temperature profiles, shown as the solid curves 
in figures 9 ( a )  and 9 ( b ) ,  give part of the answer to  this question. The computed 
concentration profile in figure 9 (a )  matches the experimental points quite well, 
except a t  the very top and bottom of the cell, where the experimental curves vanish. 
This small discrepancy is caused by the imposition of constant-refractive-index 
boundary conditions in the integration of the Poisson equation. This procedure is 
unphysical. The true boundary conditions consist of a constraint on a linear 
combination of C,(x) and T , ( z )  (the equivalent of (6) below). It is not possible to  
impose this constraint in our data analysis, because it would require an a priori 
separation of the fundamental component of the refractive-index field into its 
temperature and concentration components. However, judging from figure 9 ( a ) ,  this 
error has minor consequences. The experimental temperature profile in figure 9 ( b )  
shows a slight asymmetry with respect to the computed profile. This is a consistent 
feature in all of our data. The temperature dependencc of the refractive index has 
been taken account of in this analysis, and the concentration variation at this value 
of $ is not large enough for this to be purely an optical artifact. This asymmetry may 
therefore represent a slight non-Boussinesq effect. Finally, it is useful to  note that, 
for the four experimental data sets for which a direct comparison with theory is 
possible, the average ratio of the theoretical and experimental Rayleigh numbers is 
1.01 10.02. Forcing the peaks of the fundamental-component profiles to match a t  
midheight did not require us to  manipulate the Rayleigh numbers unreasonably. 

The evolution of the shape of the concentration profile C,(z) with Rayleigh number 
is illustrated in figure lO(a). These profiles, which correspond to the four images in 
figure 2 a t  @ = -0.39, arc spaced approximately equally in phase velocity. As the 
Rayleigh number is increased, the peak amplitude of the concentration profile 
decreases, and the central plateau broadens, corresponding to a decrease in the 
thickness in the concentration boundary layers a t  the top and bottom surfaces of the 
ccll. Both of these effects can be attributed to the enhanced mixing by the convective 
flow at higher Rayleigh number. The dips in the concentration profiles at midheight, 
as well as the lack of symmetry about the midplane seen a t  the highest Rayleigh 
number in figure lO(a) ,  probably represent systematic errors in our data analysis 
rather than true features of the concentration fields. The curves in figure 10(b)  are 
derived from the numerically computed concentration fields for $ = -0.25 provided 
by W. Barten. They have been interpolated from the original data to  equally spaced 
values of the phase velocity to match the conditions in figure 10(a). Because of the 
difference in separation ratio, the computed and measured concentration profiles 
cannot be expected to  agree in detail. Nonetheless, the main features just noted - the 
broadening and weakening of the plateau in the centre of the cell as the Rayleigh 
number is increased - are exhibited by both the numerical and experimental profiles. 

Having found that the fundamental components of the experimental temperature 
and concentration fields match the numerically computed fields quite well, we now 
turn our attention t o  the zero-spatial-frequency (or ‘d.c. ’) components T,(z) and 
C,(z). As we pointed out above, our experiments do not determine these fields 
unambiguously. Rather, we measure the d.c. component of the total refractive-index 
field, and only to within an additive quadratic function of z. The three parameters 
of this function can in principle be determined by forcing the experimental 
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FIGURE 10. (a )  Experimentally measured profiles C,(z) of the fundamental concentration 
component are shown for various Rayleigh numbers at pk = -0.39. Curve (i) r = 1.339, (ii) 
r = 1.385, (iii) r = 1.443, (iv) r = 1.607. These profiles were computed from the images in figure 2 
and are separated by approximately equal differences in phase velocity. ( b )  Theoretical 
concentration profiles for $ = -0.25, interpolated to equally spaced phase velocities so as to match 
the curves in (a). Curve (i) r = 1.22, (ii) r = 1.24, (iii) r = 1.28, (iv) r = 1.43. 

temperature and concentration fields to obey the same boundary conditions as the 
computed fields. However, contrary to  the case for the fundamental-wavenumber 
components, which differ strongly in shape, there does not seem to be a way to 
separate the d.c. concentration and temperature fields. Therefore, we have chosen to 
concentrate all our uncertainty into C,(z) by setting the temperature field equal to 
the theoretical profile qb . th (z )  and putting 

( 5 )  
The free parameters a, b and c should in principle be determined by the requirements 
that  the average of C,(z) over z must be 0 (we subtract out the mean concentration), 
and that the diffusive component of the concentration flux must vanish a t  the upper 
and lower boundaries of the cell, where the convective part of the flux vanishes: 

C,(z) = (an/X)-l[n,(z) - (an/aT) 57,th(z)] + a+bz+&z2. 

ac,/az+s,c,(i-c,)aT,/az = 0, z = (o,i) .  (6) 
(Here, S ,  is the Soret coefficient ; indeed, this equation for the concentration flux is 
the definition of ST.) We have found that the noise in the experimental data is too 
large to allow an accurate calculation of the derivatives in (6). Instead, therefore, we 
have adjusted the parameters a ,  b and c by applying the ad hoc condition that the 
component of C,(z) that is antisymmetric with respect to reflection about the cell 
midplane should be minimized. For the numerically computed concentration field, 
this antisymmetric component is observed to  vanish. The data in figure 9(c) show a 
typical result. With three adjustable parameters, it is hardly surprising that the 
experimental profile can be made to match the numerical curve quite well. To put 
this result in perspective, two comments are in order. First, the fit parameter c is 
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FIQURE 11. Two-dimensional plots of lines of (a) equal temperature and (b) equal concentration for 
a single pair of convective rolls as reconstructed from data taken at r = 1.287 in a fluid with 
$ = -0.25. In  (a), the temperature contours are spaced by 8T = 0.161 O C ,  and the temperature 
difference applied across the cell is AT = 3.698 "C. In  (b), the concentration contours are spaced by 
8C = 3.04 x corresponding to a dimensionless concentration difference @&C/aAT = 0.00408. 

observed to match our experimentally measured image-intensity offset to within our 
experimental uncertainty. Second, it should be appreciated that the typical difference 
between the numerical and experimental profiles for C,(z) represent typically 1 % of 
our measured refractive-index field, a tiny fraction of the total measured signal. 

With the results of the numerical procedures just described, we can now 
reconstruct the full, two-dimensional concentration and temperature fields. An 
example is given in figure 11, where the lines of equal temperature (figure l la)  and 
equal concentration (figure 11 b )  are shown for a single roll pair in a left-going state 
at  r = 1.287, with $ = -0.25. Because our fit and reconstruction procedures have put 
all the noise into the concentration field, the temperature field in figure 11 (a)  is 
smooth and noise-free. The equal-concentration contours in figure 11 (b)  show the 
different concentrations in adjacent rolls and the sharp jumps in concentration at  the 
roll boundaries. Each roll exhibits two weak extrema in the concentration, separated 
by a nearly horizontal line of local minimum. The structure corresponds to the dip 
in the concentration profile C,(z) plotted in figure lO(a). This is the principal 
difference between our reconstruction and the numerical computation, which 
predicts an essentially uniform concentration within each roll. 

4. Visualizations of transient flow fields 
The results presented so far in this paper have come from the analysis of carefully 

prepared, steady states of travelling-wave convection. We have exploited the spatial 
and temporal periodicity of the data for noise reduction, and this has allowed us to 
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FIQIJRE 12. Sequence of shadowgraph images taken every 5 s, starting at the top and proceeding 
downwards in time. The first image was made 160 s after the Rayleigh number was increased from 
r = 1.592 to 1.730, with $ = -0.45. The initial stage of this transient consists of linear waves which 
cause the weak, periodic contrast in the first two images. The lower images show the ‘spatial 
collapse ’ by which this pattern of linear waves forms a spatially confined nonlinear pattern before 
filling the entire cell with rolls. In this stage of evolution, the multiple thread-like curves which 
mark the roll boundaries are evidence that the rolls rock back and forth repeatedly rather than 
circulating continuously in one direction. 

make precise quantitative analyses of the data. We have also conducted many 
experiments on transient flows. In  such cases, we are less able to use symmetries for 
noise reduction, but a great deal of useful qualit.ative information is nonetheless 
revealed by such observations. 

Figure 12 is a sequence of shadowgraph images taken from one such transient 
experiment. In  this run, the Rayleigh number was jumped from just below the onset 
of convection ( r  = 1.592) to somewhat above onset ( r  = 1.730). Onset transients can 
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be quite complex in this system, even in this one-dimensional geometry (Kolodner 
et al. 1987; Moses, Fineberg & Steinberg 1987; Steinberg, Moses & Fineberg 1987). 
However, the jump in Rayleigh number is small enough that a spatially coherent 
flow persists for a substantial length of time, and the subsequent ‘spatial collapse’ 
caused by nonlinearities occurs gradually (see especially figure 2 of Steinberg et al. 
1987). The first phase of the onset transient consists of the exponential growth of 
linear travelling waves (Kolodner et al. 1986; Surko & Kolodner 1987) which are 
responsible for the contrast in the first two images in figure 12. Because the linear 
state consists of an infinitesimal rocking back and forth of periodically arrayed 
regions rather than fully ‘overturning ’ or continuously circulating rolls, the 
shadowgraph image in this stage consists of a weak, smooth, periodic pattern of light 
intensity. As the amplitude of the rocking motion increases (middle images in figure 
12), it  begins to cause finite-amplitude disturbances to the diffusive concentration 
field, and this leads to thread-like structures where sharp concentration gradients 
mark the flow. In addition, this region of finite amplitude begins to be spatially 
confined - a nearly motionless front separating finite-amplitude motions from nearly 
quiescent fluid is visible on the left of the bottom images in figure 12, and a 
corresponding front is expanding beyond the right edge of the images. The 
persistence of several dark and light bands at each roll boundary in the bottom 
images in figure 12 indicates that the rolls are still rocking back and forth and have 
not yet begun to turn continuously in one direction. 

The sequence of images in figure 13 is taken from another transient in which 
convection was triggered less abruptly by making a somewhat smaller jump in 
Rayleigh number : from r = 1.591 to r = 1.687. In this run, the flow evolves directly 
to fully overturning rolls marked by continuous, multiple-turn spiral features rather 
than the thread-like features in figure 12. We suggest that the appearance of 
overturning rolls in figure 13 represents the nonlinear evolution of pure travelling 
waves in the linear state which is first triggered by the jump in Rayleigh number. In 
contrast, the rocking back and forth visible in figure 12 is caused by the presence of 
a substantial standing-wave component in the linear waves. Our reasoning is as 
follows. The smaller jump in Rayleigh number in the run in figure 13 allows the 
transition to nonlinear convection to be preceded by a substantial period of linear 
growth. During this phase, the linear waves evolve towards the equilibrium pattern 
seen exactly at onset, in which left-going waves dominate on the left of the cell and 
right-going waves dominate on the right of the cell. (Kolodner et al. 1986). The 
nonlinear state seen in figure 13 shows the same pattern of wave directions. In the 
run of figure 12, however, there is much less time for this linear evolution, and linear 
waves propagating in both directions are found everywhere in the cell, leading to a 
pattern with a substantial standing-wave component. In  the centre of the cell, as 
visualized in figure 12, even though the right-going linear wave component is 
dominant, it is accompanied by a substantial left-going component. The standing- 
wave component in the linear wave pattern grows into nonlinear rolls which rock 
back and forth before the linear wave pattern can evolve into the more equilibrated 
pattern seen in figure 13. 

It is instructive to follow the evolution of an individual roll in figure 13. For 
example, a weak, dark feature is just becoming visible on the bottom surface of the 
cell, just to the left of the middle of the second image from the top. This feature is 
caused by a warm plume of ethanol-poor fluid which is rising from the bottom 
surface. As time progresses, this plume rises and curls continuously around in the 
clockwise direction without changing direction, forming a spiral with several turns 
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FIQURE 13. Sequence of shadowgraph images taken during a turn-on transient with $ = -0.45 
which is less abrupt than that shown in figure 12. The time step between images was 10 8. I n  the 
linear phase of this run, the waves on the right side of the cell were dominantly right-going, and 
those on the left side of the cell were dominantly left-going. These linear waves evolved directly into 
‘overturning’ rolls, which are marked by continuous light or dark spirals, as opposed to the 
multiple thread-like features in figure 12. This transient also exhibited a spatiotemporal defect, as 
the rolls are seen to propagate outwards from the centre of the image. 

as its position drifts to the left. The spiral structure is gradually erased by diffusion, 
so that a nearly homogeneous roll has been formed by the time the plume has drifted 
to the left edge of the image in the bottom frame. Several other similar evolutions are 
evident in this picture. These transient images directly show the formation of the 
concentration boundary layers which is associated with fully equilibrated travelling- 
wave states. 

This sequence of images also gives some insight into the behaviour of defects in this 
system. The second roll from the left in the bottom image contains ethanol-rich fluid 
swept down from the upper boundary layer and is drifting to the left. Its neighbour 
to  the right, however, exhibits both dark and light ‘J’-shaped features, and it is 
drifting very slowly to the right. The separation of the two rolls will eventually create 
an unstable situation which can be resolved in one of two ways. First, two new rolls 
can be nucleated, forming a spatiotemporal dislocation of the type visualized by 
Bensimon et al. (1990). This class of defect also includes the mutual annihilation that 
can occur when two neighbouring rolls move towards one another. Second, one of the 
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FIQURE 14. (a) One image from an equilibrated state of right-going travelling waves with 
= -0.39, at r = 1.326, just above the saddle node. (b) Transient state of travelling waves seen 

after the Rayleigh number is dropped to r = 1.241, just below the saddle node. Before the rolls 
decay away, they speed up substantially. In order to maintain the balance between the large-scale 
backflow and the lateral flux of fluid travelling with the travelling waves, the rolls shrink in size, 
leaving a visible open path for the backflow. The images were made every 20 s, starting at the top 
and proceeding downwards in time. 

rolls can reverse its direction of drift and follow the other. However, this would 
require the roll which reverses its drift direction to exchange ethanol with its 
neighbours, and this is a slow, diffusive process. Thus, it  is to be expected that the 
evolution of such situations takes the form either of abrupt spatiotemporal 
dislocations or very slow reversals of drift direction. This is indeed what is observed 
in experiments - see, for example, figure 9 of Bensimon et al. (1990). 
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Warm 
FIQURE 15. Sketch of the flow in figure 14 (b), shown in a comoving frame. In a pattern of travelling 
waves, the fluid is separated into a component which is trapped in the rolls and moves with them 
at the phase velocity (contained inside the closed curves) and a balancing backflow component 
which threads over and under the rolls in the opposite direction (heavy open curve). In a pattern 
which travels to the right, clockwise-circulating rolls have higher ethanol concentration ( '  h ') than 
average, and counterclockwise rolls have lower concentration ( ' 1 '). 

Figures 14 ( a )  and 14 ( b )  illustrate a phenomenon which is of great importance in 
steady, nonlinear travelling-wave convection but which is most directly observed in 
a turn-off transient. I n  figure 14(a), we show a well-equilibrated state of fast 
travelling waves just above the saddle node, with + = -0.39. Figure 14(b) shows the 
transient pattern created when the Rayleigh number is dropped to just below the 
saddle node. I n  the long run, the convection pattern decays away, but its phase 
velocity increases substantially bcfore i t  does so. In this way, we can create 
convective patterns which propagate much more rapidly than they do under stable 
conditions. In figure 14(b), it is evident that the fast rolls have decreased 
substantially in size. The ethanol-poor, counterclockwise-circulating rolls remain 
closer to  the lower cell boundary, leaving an open space above them, and the ethanol- 
rich, clockwise-circulating rolls have pulled up against the upper cell boundary. 

The behaviour shown in figure 14(b) is evidence of the existence of a large-scale, 
two-component current in this system. Linz et al. (1988) and Barten et al. (1989, 
1990) first pointed out, on the basis first of a Galerkin-approximation calculation and 
then using full numerical integrations of the Navier-Stokes equations, that, when 
viewed in a comoving frame, a pattern of travelling rolls exhibits separatrices, 
roughly equivalent to the roll boundaries, which separate two components of the 
fluid. One component is trapped within the convective rolls and moves with them a t  
their phase velocity. In a closed system, this mass flux must be balanced by a second 
component, a backflow which threads over and under the rolls in the direction 
opposite to the wave propagation. As the phase velocity is increased, the rolls would 
transport a greater flux if their size remained the same; thus, they must shrink and 
allow a greater backflow. The sketch in figure 15 shows the flow in figure 14(b) 
interpreted in these terms. Our experiments reveal that, in order to accommodate the 
increased backflow, the ethanol-rich rolls retract towards the upper cell boundary, 
while the ethanol-poor rolls move towards the lower boundary. 

Moses & Steinberg (1988, 1989) gave evidence of this large-scale current in a series 
of beautiful experiments on weakly nonlinear travelling-wave convection in which a 
small fluid element was marked by excitation of dissolved photochromic dye. 
Viewing the flow from above, and thus integrating over the height of the cell, they 
observed that the dyed fluid split into two components, one travelling with the 
convective rolls a t  their phase velocity, and the other drifting in the opposite 
direction, at a velocity which depends on the ratio of the phase velocity to the 
velocity of circulation inside a roll. A simple Lagrangian calculation of the flow 
exhibited the separation of the fluid into two oppositely drifting components which 
matched the experimental observations. The behaviour of their model is just that 
shown in figures 14(b) and 15. 

Another important large-scale current associated with travelling-wave convection 
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FIGURE 16. ‘Neutrally-stable front’ between a state of right-going rolls on the left and a quiescent 
state on the right, made a t  r = 1.311 and @ = -0.39. Time starts at the top and proceeds 
downwards a t  a sampling rate of one image every 20 s. The front is marked during the first half 
of the sequence by a light-outlined, clockwise-circulating roll of ethanol-rich fluid which gradually 
shrinks as i t  moves upwards into the top half of the fluid layer. During the second half of the 
sequence, a dark-outlined, counterclockwise-circulating roll of ethanol-poor fluid shrinks into the 
lower half of the fluid layer. I n  order to enhance the contrast in these images, the screen of the 
optical system was pulled back quite a distance from the cell. The increased path length caused the 
outline of the upper and lower cell boundaries to be distorted. 

is illustrated in the transient flow of figure 16. This is an image of a ‘neutrally-stable 
front ’ (Kolodner 1990) which separates a region of slow travelling-wave convection 
from a non-convecting region. In  this state, the front propagates through the system, 
leading to a transition either to a state in which convection fills the cell, or to  a state 
in which the entire cell is quiescent, depending on the direction of its propagation. 
In making figure 16, we set the Rayleigh number very close to the value a t  which the 
front velocity is zero. As a consequence, this ‘transient ’ actually lasted for many 
days, allowing us to make an essentially steady-state image of the flow. Slightly more 
than one full cycle of the travelling-wave oscillation is shown. 

In the top image in figure 16, the rightmost roll is outlined in white by clockwise- 
circulating, ethanol-rich fluid. As time progresses during the first half-cycle of the 
oscillation, this roll moves to the right, decreasing in vertical extent and disappearing 
into the top surface of the cell. In the second half-cycle, a corresponding, 
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counterclockwise-circulating, ethanol-poor roll decreases in vertical extent and 
moves down into the lower surface of the cell. Thus, during the first half-cycle, 
ethanol-rich fluid is pumped laterally into the top half of the fluid layer just outside 
the front, 'and ethanol-poor fluid is pumped into the lower half during the second 
half-cycle. Averaged in time, this process enhances the stabilizing density 
stratification produced in the quiescent part just beyond the front region by the 
Soret effect. By this mechanism, convection is prevented from invading the quiescent 
region, and the front is stabilized. 

These observations conform exactly to the description of a large-scale con- 
centration current given by Linz et al. (1988) and Barten et al. (1989, 1900, 1991). 
These authors observed in computations that the phase lag between the 
concentration and temperature waves in travelling-wave convection causes a time- 
averaged flux of concentration to be advected in the direction of the roll propagation 
in the top half of the cell, and a balancing flux in the opposite direction is produced 
in the bottom half of the cell. Averaged in time, these oppositely propagating fluxes 
create a pair of half-height, counter-circulating secondary concentration loops a t  a 
leading-edge front - see figures 3 ( b )  and 4 ( c )  of Barten et al. (1991). These secondary 
concentration loops are just the time average of the behaviour of the right-most rolls 
in figure 16. This mechanism of front stabilization appears to be responsible for the 
stability of a variety of confined states of travelling-wave convection (Barten et al. 
1991 ; Kolodner 1991 ; Surko et al. 1991). 

Figure 16 is also interesting from the standpoint of the spatiotemporal symmetries 
exhibited by travelling-wave convection. As discussed above, spatially extended 
travelling-wave states are antisymmetric with respect to the combined operations of 
a lateral shift by half a wavelength and a reflection through the horizontal midplane. 
In a spatially confined state, this symmetry is clearly broken. However, as pointed 
out by Barten et al. (1991), confined states should exhibit an analogous symmetry 
under a reflection through the midplane combined with a temporal shift by half an 
oscillation period. This symmetry is evident in figure 16, especially including the 
behaviour of the half-height rolls near the front separating the convecting and non- 
convecting regions. 

Our final transient experiment, shown in figure 17, constitutes the most direct 
qualitative proof of the existence of the concentration wave which was the original 
subject of this paper. This experiment also reveals evidence of the backflow fluid 
component described in the discussion of figures 14(b) and 15. This run began with 
a well-established state of slow, left-going rolls. Then, a t  time t = 0 in the figure, the 
Rayleigh number was abruptly set to zero. As indicated by the vertical time bars on 
the right of the figure, the relaxations of the temperature, velocity, and concentration 
fields require the definition of several different timescales. By time t = 30 s, however, 
the velocity and temperature fields have decayed essentially to zero, leaving only the 
slowly diffusing concentration field imprinted in the fluid. As sketched in figure 15, 
this field consists of alternating regions of high and low ethanol concentration 
(formerly convective rolls) separated by a continuous region of intermediate 
concentration (formerly the backflow in figure 15). Because of their differences in 
buoyancy, the ethanol-rich regions tend to float upwards, and the ethanol-poor 
regions drift downwards, causing all the former rolls to deform (time t = 30 to 70 s 
in figure 17). If it  were not for the neutrally buoyant backflow component, the fluid 
layer would evolve into a laterally uniform state of high ethanol concentration on top 
and low concentration on the bottom. However, even after the buoyancy-driven 
motions have ceased (after time t = 90 s in figure 17), the backflow component which 
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FIQURE 17. Images made every 10 s during an experiment in which a well-developed state of left- 
going rolls at r = 1.390 and y? = -0.45 was quenched by abruptly setting r = 0. The time bars on 
the right of the figure show the vertical viscous, thermal, and mass diffusion times, aa well as the 
timescale for the balancing of the temperature regulation system. After 30 s, the velocity field has 
completely decayed, the top and bottom plates of the cell are at the same temperature, and the 
temperature field in the interior of the fluid has decayed by a factor of - 60. Further evolution of 
the image is therefore due only to differential buoyancy caused by spatial variations in ethanol 
concentration. The contrast in the bottom image has been enhanced to saturation to show details 
of the final structure. 
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marks the boundaries between rolls remains visible, giving the image the appearance 
of two rows of bricks in a wall. 

5. Discussion 
I n  this paper, we have presented visualizations of patterns of travelling-wave 

convection in ethanollwater mixtures using shadowgraphy from the side. This has 
turned out to be an extremely powerful technique for studying two-dimensional 
flows. Because of the strong dependence of the index of refraction on the ethanol 
concentration, we have been able to make precise quantitative and qualitative 
observations of the structure of the convective concentration field. We have seen 
that, in steady states of travelling-wave convection, there is a concentration wave 
which leads the temperature wave by a sizable phase angle. The amplitude and phase 
of this concentration wave are associated with the propagation of the pattern. As the 
Rayleigh number is increased and the propagation slows down, the magnitude of the 
concentration field is reduced by mixing, and the phase angle approaches in. The full 
two-dimensional structure of a travelling-wave state consists of rolls of alternating 
high and low concentration which are separated by a thin, continuous layer of 
intermediate concentration. Our separation of the temperature and concentration 
waves has been based on a small number of ad hoc assumptions which, however, 
appear physically reasonable. This analysis does seem to exhibit some systematic 
errors, principally seen in the shapes of the profiles of the fundamental concentration 
component C,(z) in figure lO(a). There is also a small discrepancy at intermediate 
phase velocity between the measured phase angle q5c - q5T and that exhibited by the 
numerical computations of Barten et al. (1989, 1990). Nonetheless, our basic 
conclusion is that these computations describe the travelling-wave concentration 
field in minute and quantitative detail. This is an important theoretical achievement 
which has already borne the fruit of explaining more complex confined travelling- 
wave states (Barten et al. 1991). 

Observations of transients have also revealed interesting physical phenomena. The 
early evolution of linear travelling waves into rolls which rock back and forth with 
increasing amplitude, entraining fluid from thc growing boundary layer into the 
bulk, or into fully developed, ‘overturning ’ rolls, can be clearly seen in figures 12 and 
13. This is because strong optical contrast is caused by exactly the feature of the flow 
which is associated with these evolutions - the sharp gradients in the concentration 
field. These qualitative features of developing travelling-wave states have long been 
heuristically understood, but ours is their first direct observation. A duplication of 
this sequence of events appears to be within present theoretical capabilities, and such 
a calculation would be most welcome. 

Visualizations of transient flows have also confirmed important notions of large- 
scale currents which are inhercnt in travelling-wavc patterns. The first of these, a 
concentration flux which propagates parallel to the phase velocity of the pattern in 
the upper half of the fluid layer and in the opposite direction in the lower half, 
appears to be the explanation for the existence of confined states of travelling waves 
(Barten et al. 1991). The observation of this secondary flow in figure 16 is its only 
direct experimental confirmation. The second large-scale current, the backflow 
necessitated by the trapping of some of the fluid in the propagating convective rolls, 
has now been demonstrated in two complementary experiments. It would be most 
interesting to repeat the photochrornic experiments of Moses & Steinberg (1988, 
1989) while viewing from the side. In this way. the disadvantages of seeing this flow 



The concentration field in travelling-wave convection 57 

only indirectly, as we do, and of integrating out its important vertical structure, as 
they do, would both be overcome. 

We are pleased to  acknowledge many useful discussions with B. I. Shraiman, 
H. R. Brand, C. M. Surko, and M. Liicke. We are particuarly indebted to W. Barten 
for providing us with the results of unpublished numerical computations. 
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